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ABSTRACT 
Toolkits and other tools have dramatically reduced the time 
and technical expertise needed to design and implement 
graphical user interfaces (GUIs) allowing high-quality, 
iterative, user-centered design to become a common 
practice. Unfortunately the generation of functioning 
prototypes for physical interactive devices as not had 
similar support – it still requires substantial time and effort 
by individuals with highly specialized skills and tools. This 
creates a divide between a designers’ ability to explore 
form and interactivity of product designs and the ability to 
iterate on the basis of high fidelity interactive experiences 
with a functioning prototype. To help overcome this 
difficulty we have developed the Calder hardware toolkit. 
Calder is a development environment for rapidly exploring 
and prototyping functional physical interactive devices. 
Calder provides a set of reusable small input and output 
components, and integration into existing interface 
prototyping environments. These components communicate 
with a computer using wired and wireless connections. 
Calder is a tool targeted toward product and interaction 
designers to aid them in their early design process. In this 
paper we describe the process of gaining an understanding 
of the needs and workflow habits of our target users to 
generate a collection of requirements for such a toolkit.  We 
describe technical challenges imposed by these needs, and 
the specifics of design and implementation of the toolkit to 
meet these challenges.  
ACM Classification: 
H5.2. Information interfaces and presentation: User 
Interfaces; Input Devices and Strategies; Prototyping.  
Keywords: Toolkits, physical user interfaces, rapid 
prototyping, interaction and product design.   

1. INTRODUCTION 
Over the last two decades tools for creating graphical user 
interfaces have progressed substantially, and many of the 

early goals of the user interface tools community (such as 
those described in [4, 15, 14]) have been met. In particular, 
creation of graphical interfaces has progressed from an 
activity requiring substantial effort by highly skilled 
experts, to one that can often be undertaken quickly by 
people whose primary skill set is not software development 
(e.g., domain experts and interaction designers).  This has 
been a strong enabler in the widespread adoption of high 
quality iterative approaches to GUI design and 
implementation.  

As interactive computing begins to take advantage of 
modern small low-cost processors, the design space for 
interactive products becomes increasingly larger and 
increasingly attractive.  However, we find that development 
of such products suffer from many of the same difficulties 
common in the early days of developing graphical 
interfaces.  Turning an interactive product concept into a 
functional prototype requires a substantial amount of effort 
by technically skilled individuals.  This makes iterative 
design with high-fidelity functioning prototypes 
prohibitively expensive for most. 

The Calder system is a hardware toolkit designed to extend 
the benefits gained in the development of tools for creating 
GUIs into the domain of physical interfaces. In analogy to 
GUI toolkits, the Calder development environment 
provides a set of reusable input and output components, an 
infrastructure for connecting these components (in both 
wired and wireless fashion), and integration into existing 
interface prototyping environments.   

In this paper we describe the first two steps in a three step 
process: study of our intended users (product and 
interaction designers) and design and development of 
technical solutions to meet their needs. The next section of 
the paper describes the background study of the intended 
users followed by descriptions of a set of sample devices 
built with the toolkit to illustrate its range and versatility. 
The next four sections then describe the design and 
implementation of our technical solution. Finally, we 
present brief conclusions and discussion of the third step in 
the process – deployment, testing, and iteration – and lay 
out plans for future work.   
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2. SUPPORTING DESIGNERS 
In previous work, we conducted a series of interviews with 
and observations of product and interaction designers that 
led us down initial paths toward developing lightweight 
functional components to support the processing of design 
physical products [1].  This earlier work gave us insight 
into the needs and demands that would be placed on a fully 
developed toolkit. 

The Calder toolkit is the resulting solution we developed 
from this earlier work.  A central goal of the system is to 
bring fully functional prototypes into the design process 
much earlier while still allowing early design to be rapid 
and fluid.  In this section we will detail how observations 
and feedback from designers affected our design decisions 
for the toolkit. 

In our initial investigation of early stage design we found 
designers working with two and three-dimensional artifacts 
to support sketching and prototype activities.  These 
activities have been documented by professional product 
designers [19, 5], and supported in other tools for early 
design [10, 12, 2].  In many cases these artifacts begin with 
literal sketches on paper.  However, as concepts progressed 
and more fidelity was needed (e.g., understanding how a 
form would feel in the hand), sketching moved to (rapid) 
creation of solid forms (“3D sketching”), and to on-screen 
mockups of interactions.  Figure 1 illustrates a common 
practice of roughing out of shapes in foam as a kind of 3D 
sketching.   

We found that sketching and prototyping were used for at 
least three important purposes:  

Design exploration: Creating enough representation of the 
design so that it could serve as a thinking tool to help make 
choices and drive idea generation, 

Communication: Providing a medium for conveying a 
design to managers, clients, potential users, and other 
designers on a team, 

 

Design testing and data gathering: providing a vehicle for 
understanding user models and reactions, doing early user 
testing, and gathering other user-centered data. 

Overall, we found the sketching and prototyping practices 
observed to be quite effective within a certain range of 
activities, but also limiting in others. This led us to a dual 
approach of attempting to maintain as much of typical 
current practices as possible, but at the same time provide a 
means to extend the scope and fidelity of the artifacts that 
could be developed. Specifically, this introduced two 
overall driving factors for our toolkit: introducing and 
extending executability, and preserving fluidity and 
flexibility.   

Introducing and extending executability: Both 
interaction designers and product designers often begin 
with non-functional paper sketches.  This enables, for 
example, quick and easy “pencil and paper tests” [18]. 
Design of interactive sequences often precedes the use of 
executable on-screen mockups that allow for more robust 
communication and testing, although often in a different 
medium than the final product.  However, those working 
with forms do not typically have an equivalent option, 
limiting them to the use of non-functional prototypes. 
Further, this forces exploration of interactivity to remain 
separate from exploration of form, making it difficult to 
understand the important relationships between them.  
A central motivation behind our toolkit work has been to 
extend capabilities for functional prototypes into the 
domain of form, and to allow form and interactivity to be 
treated together.   

Simple programming is typically necessary to create 
functioning prototypes. We found many interaction 
designers to be quite fluent with GUI prototyping tools, 
such as Macromedia Director, as a means for on-screen 
expression of interactive concepts. In accordance with our 
principle of minimal disturbance of existing practice, we 
made it a goal to work with existing prototyping tools 
rather than construct new ones (we currently target support 
for Macromedia Director, but plugging into Java is also 
supported and Visual Basic support is being developed). 

Preserving fluidity and flexibility:  An important 
hallmark of sketching activities is their fluidity and 
flexibility – artifacts must be comparatively easy to create 
and modify so that the rapid iterations needed in early 
design are not interfered with.  This is often achieved in the 
domain of form by using fairly soft materials such as the 
foam shown in Figure 1 that can be easily cut with a knife 
or a band-saw in a few moments.  These materials offer 
some important capabilities that we wanted to preserve.  
For example, one designer described how he would directly 
modify a rough form by cutting parts of it away while 
working with potential end-users.  This led us to put an 
emphasis on supporting work with soft materials – in 
particular foam. 

 
Figure 1. Designers often use blocks of foam material to 

generate sketches of form. 



 

 
 
Figure 2. Wireless knob and buttons used within a foam 

model of a concept game controller. 
 

 

Figure 3. Navigation controller with the wireless buttons 
placed in a variety of locations around the form. 

 

In order to preserve fluidity, the mechanism for attaching 
components to the form needed to be carefully considered. 
Form designers must be able to rapidly try out different 
placements of components (for example, control buttons), 
by removing them from the form and immediately placing 
them in another location, testing the “feel” of the 
placement, and then possibly moving them again.   

To preserve flexibility, the size of components is also quite 
important.  For example, if buttons or other input devices 
need to be placed close together in the final product, it 
would be helpful if this could be done in the prototype as 

well.  This creates a technically challenging, but strong 
imperative for small size.  This push for small components 
with the emphasis on the work practices of designers is 
perhaps the biggest differentiation between the Calder 
toolkit and previous efforts (most notably the recent 
Phidgets [7, 8] and iStuff [3] toolkits, as well as older 
systems such as [13]). 

Related to this requirement, we also found early in our 
iterations that the connections between components can 
become a significant concern.  In some cases, connectors 
became a size concern, and in others the routing of wires 
interfered with fluid placement.  As a result, we felt it 
critical to keep connectors and wiring as small as possible, 
and to consider entirely wireless solutions for some 
components. 

3. EXAMPLE DEVICES 
In this section we show a number of example devices to 
illustrate how the Calder toolkit can be used early-on in a 
rapid, iterative design process. 

Game controller – Figure 2, a simple game controller is 
prototyped by placing a wireless knob and button array in a 
rough foam concept model. Due to the inherent size of the 
knob, it is placed in a cavity which fixes its location. 
However, the buttons are simply pinned down into the 
surface and can be easily moved to the other side to 
experiment with both left and right-handed configurations. 
This allows designers to gain usage experience with the 
device extremely early in development. Modifications to 
the form and interface driven by actual interactive usage 
can begin immediately. 

Navigation remote – Figure 3. By integrating with a tool 
like Macromedia Director, physical interfaces can be used 
to control and interact with high-fidelity interface mock-ups 
rather then relying on the mouse and keyboard. Here a 
navigation controller is being prototyped for a music kiosk. 
The left, right, and center buttons can be used to navigate 
and make selections. The buttons can be repositioned and 
alternative forms can be tested without having to stop the 
Director simulation. 

Chair monitor – Figure 4. A tilt sensor has been attached to 
an office swivel chair and transmits data wirelessly to a 
nearby uplink transceiver (see Sections 4 and 5.2 below) 
suspended beneath the desk. The transceiver relays the state 
of the chair to the desktop computer and then over the 
network to an ambient status display. The short-range 
wireless connection allows monitoring the state of the chair 
without a wire tether, which could easily become entangled.  
In this case, the transmission antenna was extended with an 
extra wire for additional range.  This example shows the 
diversity of potential experimental applications that could 
benefit from having the Calder toolkit beyond product 
design. 



 

Toolstone/toolbunny – Figure 5. A partial recreation of the 
two-handed toolstone interaction device [17] can be 
achieved by attaching a wireless tilt sensor onto a block of 
wood or foam to monitor block orientation to drive 
application state or modality. This allows a functional 
prototype to be created well before the form has been 
finalized. By supporting very rapid experimentation, a wide 
variety of forms can be tried without much investment or 
cause, such as using a stuffed bunny.  While this example is 
admittedly silly, it illustrates the important point that the 
toolkit is fluid enough not to heavily constrain the creative 
expression of the designer’s ideas. 

 

In the following sections we provide detailed description of 
the toolkit. 

4. TOOLKIT ARCHITECTURE 
Each of these requirements derived from our interactions 
with designers have significant engineering implications 
and present several difficult trade-off decisions that must be 
made to make this toolkit realizable.  This section describes 
some of these issues. 

Figures 6 and 7 show wired and wireless components of the 
current version of the Calder toolkit.  The relationship 
between these two sets of devices, the controlling PC, and 
development environment is illustrated in the architectural 
overview, Figure 8.  This architectural configuration was 
the result of careful consideration of the user-driven factors 
described in Section 2, as well as the constraints imposed 
by technology.   

From the technological point of view, two important 
questions became apparent very early in the development 
process: Where will power come from, and where will 
computation be performed?  In considering several possible 
architectures and reviewing previous related systems, we 
found that the answers to these questions fell into three 
possible categories: distributed among each component, a 
local master, or a global master.  In a distributed system, 
both the computational and energy resources would be 
distributed across each component in the toolkit.  A local 
master is a centralized system where the computation or 
energy source may be pooled into a single location to 
achieve greater total capacity. And a global master, likely 
involving a tether to an external source such as a PC, would 
have the ability to provide substantial computational and 
energy resources. Each of these alternatives has 
implications on how well our user-driven goals could be 
achieved and represented potential tradeoffs.  For example, 
component level computation is both possible and 
somewhat tempting, because component operation and 
communication will require a micro-controller anyway.  It 
was very likely that unused computational resources would 
already be available in each component. However, this 
approach can introduce many complexities in specifying 
the interactive behavior of the prototype (in particular, 
making it a much more difficult distributed programming 
problem) and precludes the easy use of existing 
development environments.  Similarly, while wireless 
components provide the greatest degree of fluidity and 
flexibility, allowing components to be attached and moved 
with ease, they also imply distributed power sources (i.e. 
batteries).  This begins to conflict with one of our earlier 
design constraints of minimizing size since the operational 
life span of tiny batteries tends to be short.  (Earlier work 
[1, 6] utilized an inductive coupling technique capable of 
powering small devices without the use of batteries, but we 
found significant functional limitations to this approach.)   

 
Figure 4.  Wireless chair monitor created by attaching a tilt 
sensor to the back of an office chair.  The uplink transceiver 

is suspended beneath the desk. 

 
Figure 5. Quick variations on a tool stone form factor. 

Wooden block, foam prototype, and stuffed bunny. 



 

To address the design requirements within our 
technological constraints, we chose a hybrid solution for 
the toolkit.  For computation, we chose a global model of 
an external PC so that we could employ the very large 
library of existing programming tools and environments 
that developers and designers are already familiar with.  A 
PC provides storage and communication resources that may 
be necessary to simulate the functionality of many potential 
products.  For power, we chose a split strategy to 
accommodate conflicting needs by designers.  While 
wireless components provide the highest level of fluidity, 
the spatial overhead of the communication hardware causes 
them not to be the smallest in size.  Additionally, wireless 
components cannot provide sufficient electrical power or 
bandwidth for certain components, particularly output 
devices such as motors or pixel displays.  Wired 
components do not suffer as greatly in these respects; 
however, we felt that there was inherit value supporting the 
fluidity in design exploration that wireless components 
provide.  Therefore, we created both wired and wireless 
components that employ a distributed and global source of 
power respectively. 

To unify these forms, and simplify implementation, 
wireless components communicate with a special wired 
uplink transceiver component serving as a bridge from the 
wireless to the wired portion of the system, which in turn 
connects to the PC.   

Parts of the architecture used in the Calder toolkit can be 
contrasted with prior systems in this area.  The Phidget 
system [7, 8] uses a nearly identical approach to the wired 
components of our system (we considered several other 
alternatives, but in the end concluded that this option was 
indeed the best choice given the currently available 
technology).  The iStuff toolkit [3] uses a similarly 
structured wireless solution with distributed power and 
global computation, but used technology and a 
communication infrastructure appropriate only for 
applications that permitted very large components. Finally, 
the Lego Mindstorms System [9], a well-known robotics 
prototyping toolkit, and the MetaCricket [13] system use 
primarily a local master model for both power and 
computation.   

5. COMPONENT DETAILS 
Each component in the Calder toolkit is equipped with a 
small microcontroller (µC) that is responsible for managing 
communications to the global master and providing sensing 
or control for its I/O device(s).  Wired components are 
implemented with a Microchip PIC16C745 controller that 
includes a Universal Serial Bus (USB) interface engine.  
The wireless components are currently implemented with a 
PIC16LF819.  These chips can be purchased for under $3 
in quantity. 

As illustrated in Figures 6-7, and described below, a basic 
though useful range of component types is currently 
provided by the toolkit.  However, the type of sensors and 
actuators that can be interfaced is quite broad. As we 
perform evaluation studies and move into wider 
deployment we will expand the component set as needed, 
including the addition of actuators and additional output 
devices. 

5.1 Wired Components 
The current wired components include a general-purpose 
input “hub” component and a related runtime configurable 
I/O breadboard component.  These components are capable 
of interfacing with a variety of specific input and output 
devices connected by a short cable.  

The input “hub” component, Figure 9, has four connections 
that accept digital input from a switch or button, and four 
connections that accept analog input from a slider or knob. 
The analog and digital connectors are non-compatible 

  
 

Figure 8. Architectural overview. 

 
 

Figure 6. Wired components. (left to right) I/O Breadboard 
component, 4-button array, analog joystick, D/A Input 

Component, single button, and analog knob. 
 

 
 
Figure 7. Wireless components: (left to right) analog knob, 4-
button array, master uplink transceiver, 2-axis tilt sensor, and 

3-LED array. 
 



 

making it impossible to accidentally misconnect a device. 
Similarly, the connectors are keyed preventing polarity 
reversal. For testing purposes, we have created a small 
collection of digital and analog devices designed for use 
with this hub component, Figure 6. The most sophisticated 
of these is the 2-axis joystick with button press. This 
consumes 2 analog ports and 1 digital port (if the button 
feature is to be supported by the application). Additional 
hub components may be added as needed by the application 
to support many analog and digital input devices. The 
connected devices are also “hot-pluggable”.  This allows 
the designer to try reversing the axis of the joystick or 
replacing it with two entirely different analog devices by 
simply unplugging and replugging the connections even 
while the interface control program is still running. Thus, 
basic hardware reconfigurations can occur without 
involving the software environment. 

The configurable I/O Breadboard component is designed 
for use as an electronic prototyping tool for interfacing to 
devices that are not yet in the library, Figure 10. This 
component pushes many of the internally configurable 
features of the microcontroller onto the PC for run time 
configuration.  Pins may be switched between input and 
output, as well as between analog and digital as desired, 
using simple command on the PC. This allows the more 
electronics savvy developer to dynamically reconfigure the 
component at runtime to suit the needs of their application. 

5.2 Wireless Components 
The core of the wireless system used in the toolkit is a 
wired uplink transceiver, which provides a communication 
bridge between the PC and the wireless components. 
Included among wireless components are a small button 
array, small LED array, an analog knob, and a 2-axis tilt-
switch sensor, Figures 7 and 11. Although the set of devices 
is still limited, they demonstrate that the wireless 
infrastructure is capable of supporting both non-trivial input 
and non-trivial output. A variety of other sensors and output 
modules can easily be created, with the primary limitation 
likely to be battery life rather than the wireless technology. 

To meet our goal of “foam friendly” components, we 
designed our wireless components with a push-pin 
attachment mechanism (two pins per component are 
necessary to prevent rotation) as shown in Figure 11. These 
metal pins also serve as the wireless communication 
antennas.  This satisfies the design requirement of 
supporting fluid design exploration by allowing the 
components to be repositioned without interrupting the 
interface control program while also satisfying a 
technology requirement.   

6. COMMUNICATION INFRASTRUCTURE 
Wired components communicate with a global master (a 
PC) via a USB connection.  This connection provides both 
communication and electrical power (up to 2.5W per 
device), and is standard equipment on both PCs and 

Macintosh computers.  (It is worth noting that both the 
Phidgets and iStuff systems made this same design choice 
due to these technological benefits.)    

However, a wireless communication system that fit within 
our initial design constraints was not commercially 
available. Though substantial advances in wireless 
technology have been made recently, size of the 
components and the size of the battery required to 
implement standard wireless solutions did not meet our 

 

Figure 9. 2-axis joystick with button press consumes 2 
analog ports and 1 digital port on the D/A Input “hub” 

component. 
 

 
Figure 10.  General-purpose runtime configurable I/O 
Breadboard component used for exploring new and  

custom devices. 
 

 
Figure 11. Close up of the wireless button and LED array. 
The pins on the back of the components used to attach to 
foam models also serve as transmit and receiver antennae 

. 



 

requirements. In order to achieve small size through a 
minimum of parts, we developed a simple, very low-power 
wireless system designed to operate only at short distances.  
In its typical use with foam models, we foresaw that a small 
transceiver component would be placed inside a cavity in 
the foam or on the bottom of the model (see Figures 3-5).  
The wireless components would then be freely positioned a 
few inches away on the surface of the foam.   

Unlike conventional radio, the wireless technology 
presented here uses a capacitive coupling technique that is 
very low-power and does not require specific size, shape, or 
oriented antennas to communicate [16]. This allows each 
component to be operated by small coin cell batteries and 
short antennae.  

To transmit data, all that is needed is a pulse-width 
modulation (PWM) capable microcontroller and a short 
antenna wire. Data is transmitted by controlling the 
presence or absence of a carrier signal on the antenna 
generated by the PWM module. This is often referred to as 
CPCA (carrier-present carrier-absent) modulation or OOK 
(on-off keying) [11].  Some of the limitations of this 
modulation scheme are mitigated by the use of a slotted 
transmission protocol that precludes packet collisions. 

Since nothing besides an open wire is attached to the PWM 
output pin, a negligible amount of current is necessary for 
data transmission. Typically, the attached output device or 
input sensor will consume the majority of energy resources. 
Using a single 12mm lithium coin cell, we have 
experienced continuous transmit and receive cycles lasting 
over 72 hours. Since the 16LF819 draws as little as 0.2µA 
while in sleep mode, simple power conservation techniques 
can extend the operational life span of these components to 
several weeks without a significant change in behavior 
from the user’s perspective.   

Though transmission is possible with very short antennae, 
larger antennas can substantially increase the amount of 
capacitive coupling achieved between the transmitter and 
the receiver thereby improving range. By attaching a thin 6-
inch wire to the transmission antenna, we have seen the 
maximum component range increase from 2-3 inches to 
nearly 2 feet. This allows the toolkit user to easily increase 
range simply by adding extra conductive material to the 
transmission antenna, such as twisting on a thin piece of 
wire. In many cases, this modification may have little to no 
impact on the usability of the prototype.  

Though transmission can occur with nearly no parts 
external to the existing microcontroller (i.e., with only an 
antenna wire attached to one of its output pins), the same 
cannot be said about receiving data. A few additional parts 
are necessary to amplify and perform basic filtering. Shown 
in Figure 12, the receiving circuit consists of two MCP602 
operational amplifiers (normally packaged in a single small 
integrated circuit) with a simple low-pass filter in between.  

The output of the receiver is DC biased by the 
microcontroller to just below logic high threshold voltage. 
This done with the resistor-capacitor pair connected to the 
biasing pin (bottom right of Figure 12).  The capacitor is 
charged until the biasing pin reads it as logic high. The 
capacitor is then discharged for a controlled amount of time 
(in the range of 20µs) to drop the DC bias just slightly 
below logic high threshold. This technique allows a 
standard digital I/O pin to be sensitive to very small voltage 
variations. In the presence of the carrier signal, voltage 
spikes will occur at the carrier wave frequency registering 
as logic high, Figure 13. Since the microcontroller actively 
maintains the DC bias, the amount of signal necessary to 
trigger logic high can be dynamically adjusted in software. 
This gives the receiver the ability to adapt to different 
environments of varying noise, somewhat like automatic 
gain control. The input signal is then sampled and 
demodulated in software reconstructing the original 
transmitted data string. By utilizing the computational 
capabilities of the microcontroller, a wireless receiver can 
be accomplished with a very small number of external 
components (one eight-pin IC, four resistors, and two 
capacitors). 

When compared to typical radio tuning technology, the 
frequency response of the receiver circuit is fairly wide due 
to the simplicity of the circuit.  The result of having a wide 
bandwidth sensitivity is a reduction in range performance in 
the presence of high ambient noise.  Tighter tuning around 
the carrier frequency is possible with additional filtering 

 

Figure 12. Amplifier circuit used to receive wireless signals. 
The input and biasing pins are simple digital I/O pins on a 

micro-controller. 
 

 
Figure 13. DC biasing the input allows small voltage 

variations to trigger logic high and low switches inside the 
micro-controller. With CPCA modulation, software can 

demodulate the original data. 
 



 

components.  This would allow signal amplification to be 
much more aggressive, resulting in improved range. 
However, our current design was chosen for its small part 
count and correspondingly low space requirements yet 
reasonable frequency selectivity at 200 KHz. 

Our current implementation of this system yields a data 
transfer rate of 4Kbits/s (half-duplex). Improving the 
software demodulation or using a diode detector circuit [11] 
could increase the amount of available bandwidth.  A data 
rate of 4Kbits/s is sufficient to support several concurrently 
operating input and output devices (but not high bandwidth 
components such as graphical displays and high fidelity 
audio).  

7. PROGRAMMING INFRASTRUCTURE 
The final important aspect of the Calder toolkit is the 
programming infrastructure.  A primary goal here has been 
to integrate it with tools that our target users already use.  
Almost all interactive GUI systems are now based on a 
paradigm that uses objects to represent interactive 
components – each responsible for managing its own state, 
producing its own output on the screen, etc. – along with an 
event-based model for input.  To integrate with such a 
system we employ the same strategy as the Phidgets toolkit 
– we insert surrogate objects inside the GUI system to 
represent the external Calder objects.  Changes to the state 
of Calder components are made by changing the state of the 
corresponding surrogate objects (which encapsulate access 
to the underlying communication mechanism) and similarly 
changes to the Calder component state are reflected in the 
surrogate object.  Actions on the physical component that 
correspond to inputs are injected into the host system as 
conventional events.   

In this way, by providing only a small, very low level 
communication infrastructure, and a “glue” level of 
surrogate objects specialized to a particular host toolkit, we 
can easily transparently embed Calder components in a 
conventional GUI environment.  Above the level of 
surrogate objects, Calder components behave like other 
components in the host environment.  This allows us to 
reuse rather than reinvent the extensive programming and 
debugging environments that have been developed for GUI 
implementation.   

At a detailed level, each wired Calder component presents 
itself as a standard USB Human Interface Device (HID) 
class that loads default hardware drivers. Each component 
is given a unique serial number for identification.  Low-
level USB HID interface details are packaged into 
Dynamically Linked Libraries that provide simplified 
access routines in C.  These C routines can then be accessed 
from within the host environment using standard native 
code extension mechanisms (e.g., the Java Native Interface 
facility, or Macromedia Director XTRAs interface).   

8. CONCLUSIONS AND FUTURE WORK 
In this paper we presented the design and implementation 
of Calder, a hardware toolkit to support the design of 
interactive products. Our design and development decision 
were based on preliminary work of observing existing 
design practices and interviews.  Now that we have 
developed a functioning prototype toolkit, the next step in 
our process is to perform an evaluation of our toolkit.  To 
this end we are in the process of developing a library of 
components for use in a graduate product design course.  
From this feedback, we will iterate on our current 
generation of hardware to create a system that meets the 
needs and expectations that designers have and facilitate the 
creation of better interactive products in the future. 
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