

The Calder Toolkit: Wired and Wireless Components for
Rapidly Prototyping Interactive Devices

Johnny C. Lee1, Daniel Avrahami1,
Scott E. Hudson1, Jodi Forlizzi1,2

1Human-Computer Interaction Institute, 2School of Design
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{ johnny, nx6, scott.hudson, forlizzi }@cs.cmu.edu

Paul H. Dietz, Darren Leigh
Mitsubishi Electric Research Laboratories

201 Broadway
Cambridge, MA 02139, USA

{ dietz, leigh }@merl.com

ABSTRACT
Toolkits and other tools have dramatically reduced the time
and technical expertise needed to design and implement
graphical user interfaces (GUIs) allowing high-quality,
iterative, user-centered design to become a common
practice. Unfortunately the generation of functioning
prototypes for physical interactive devices as not had
similar support – it still requires substantial time and effort
by individuals with highly specialized skills and tools. This
creates a divide between a designers’ ability to explore
form and interactivity of product designs and the ability to
iterate on the basis of high fidelity interactive experiences
with a functioning prototype. To help overcome this
difficulty we have developed the Calder hardware toolkit.
Calder is a development environment for rapidly exploring
and prototyping functional physical interactive devices.
Calder provides a set of reusable small input and output
components, and integration into existing interface
prototyping environments. These components communicate
with a computer using wired and wireless connections.
Calder is a tool targeted toward product and interaction
designers to aid them in their early design process. In this
paper we describe the process of gaining an understanding
of the needs and workflow habits of our target users to
generate a collection of requirements for such a toolkit. We
describe technical challenges imposed by these needs, and
the specifics of design and implementation of the toolkit to
meet these challenges.
ACM Classification:
H5.2. Information interfaces and presentation: User
Interfaces; Input Devices and Strategies; Prototyping.
Keywords: Toolkits, physical user interfaces, rapid
prototyping, interaction and product design.

1. INTRODUCTION
Over the last two decades tools for creating graphical user
interfaces have progressed substantially, and many of the

early goals of the user interface tools community (such as
those described in [4, 15, 14]) have been met. In particular,
creation of graphical interfaces has progressed from an
activity requiring substantial effort by highly skilled
experts, to one that can often be undertaken quickly by
people whose primary skill set is not software development
(e.g., domain experts and interaction designers). This has
been a strong enabler in the widespread adoption of high
quality iterative approaches to GUI design and
implementation.

As interactive computing begins to take advantage of
modern small low-cost processors, the design space for
interactive products becomes increasingly larger and
increasingly attractive. However, we find that development
of such products suffer from many of the same difficulties
common in the early days of developing graphical
interfaces. Turning an interactive product concept into a
functional prototype requires a substantial amount of effort
by technically skilled individuals. This makes iterative
design with high-fidelity functioning prototypes
prohibitively expensive for most.

The Calder system is a hardware toolkit designed to extend
the benefits gained in the development of tools for creating
GUIs into the domain of physical interfaces. In analogy to
GUI toolkits, the Calder development environment
provides a set of reusable input and output components, an
infrastructure for connecting these components (in both
wired and wireless fashion), and integration into existing
interface prototyping environments.

In this paper we describe the first two steps in a three step
process: study of our intended users (product and
interaction designers) and design and development of
technical solutions to meet their needs. The next section of
the paper describes the background study of the intended
users followed by descriptions of a set of sample devices
built with the toolkit to illustrate its range and versatility.
The next four sections then describe the design and
implementation of our technical solution. Finally, we
present brief conclusions and discussion of the third step in
the process – deployment, testing, and iteration – and lay
out plans for future work.

xxxxxxxxxxxxxxx Space xxx

2. SUPPORTING DESIGNERS
In previous work, we conducted a series of interviews with
and observations of product and interaction designers that
led us down initial paths toward developing lightweight
functional components to support the processing of design
physical products [1]. This earlier work gave us insight
into the needs and demands that would be placed on a fully
developed toolkit.

The Calder toolkit is the resulting solution we developed
from this earlier work. A central goal of the system is to
bring fully functional prototypes into the design process
much earlier while still allowing early design to be rapid
and fluid. In this section we will detail how observations
and feedback from designers affected our design decisions
for the toolkit.

In our initial investigation of early stage design we found
designers working with two and three-dimensional artifacts
to support sketching and prototype activities. These
activities have been documented by professional product
designers [19, 5], and supported in other tools for early
design [10, 12, 2]. In many cases these artifacts begin with
literal sketches on paper. However, as concepts progressed
and more fidelity was needed (e.g., understanding how a
form would feel in the hand), sketching moved to (rapid)
creation of solid forms (“3D sketching”), and to on-screen
mockups of interactions. Figure 1 illustrates a common
practice of roughing out of shapes in foam as a kind of 3D
sketching.

We found that sketching and prototyping were used for at
least three important purposes:

Design exploration: Creating enough representation of the
design so that it could serve as a thinking tool to help make
choices and drive idea generation,

Communication: Providing a medium for conveying a
design to managers, clients, potential users, and other
designers on a team,

Design testing and data gathering: providing a vehicle for
understanding user models and reactions, doing early user
testing, and gathering other user-centered data.

Overall, we found the sketching and prototyping practices
observed to be quite effective within a certain range of
activities, but also limiting in others. This led us to a dual
approach of attempting to maintain as much of typical
current practices as possible, but at the same time provide a
means to extend the scope and fidelity of the artifacts that
could be developed. Specifically, this introduced two
overall driving factors for our toolkit: introducing and
extending executability, and preserving fluidity and
flexibility.

Introducing and extending executability: Both
interaction designers and product designers often begin
with non-functional paper sketches. This enables, for
example, quick and easy “pencil and paper tests” [18].
Design of interactive sequences often precedes the use of
executable on-screen mockups that allow for more robust
communication and testing, although often in a different
medium than the final product. However, those working
with forms do not typically have an equivalent option,
limiting them to the use of non-functional prototypes.
Further, this forces exploration of interactivity to remain
separate from exploration of form, making it difficult to
understand the important relationships between them.
A central motivation behind our toolkit work has been to
extend capabilities for functional prototypes into the
domain of form, and to allow form and interactivity to be
treated together.

Simple programming is typically necessary to create
functioning prototypes. We found many interaction
designers to be quite fluent with GUI prototyping tools,
such as Macromedia Director, as a means for on-screen
expression of interactive concepts. In accordance with our
principle of minimal disturbance of existing practice, we
made it a goal to work with existing prototyping tools
rather than construct new ones (we currently target support
for Macromedia Director, but plugging into Java is also
supported and Visual Basic support is being developed).

Preserving fluidity and flexibility: An important
hallmark of sketching activities is their fluidity and
flexibility – artifacts must be comparatively easy to create
and modify so that the rapid iterations needed in early
design are not interfered with. This is often achieved in the
domain of form by using fairly soft materials such as the
foam shown in Figure 1 that can be easily cut with a knife
or a band-saw in a few moments. These materials offer
some important capabilities that we wanted to preserve.
For example, one designer described how he would directly
modify a rough form by cutting parts of it away while
working with potential end-users. This led us to put an
emphasis on supporting work with soft materials – in
particular foam.

Figure 1. Designers often use blocks of foam material to

generate sketches of form.

Figure 2. Wireless knob and buttons used within a foam

model of a concept game controller.

Figure 3. Navigation controller with the wireless buttons
placed in a variety of locations around the form.

In order to preserve fluidity, the mechanism for attaching
components to the form needed to be carefully considered.
Form designers must be able to rapidly try out different
placements of components (for example, control buttons),
by removing them from the form and immediately placing
them in another location, testing the “feel” of the
placement, and then possibly moving them again.

To preserve flexibility, the size of components is also quite
important. For example, if buttons or other input devices
need to be placed close together in the final product, it
would be helpful if this could be done in the prototype as

well. This creates a technically challenging, but strong
imperative for small size. This push for small components
with the emphasis on the work practices of designers is
perhaps the biggest differentiation between the Calder
toolkit and previous efforts (most notably the recent
Phidgets [7, 8] and iStuff [3] toolkits, as well as older
systems such as [13]).

Related to this requirement, we also found early in our
iterations that the connections between components can
become a significant concern. In some cases, connectors
became a size concern, and in others the routing of wires
interfered with fluid placement. As a result, we felt it
critical to keep connectors and wiring as small as possible,
and to consider entirely wireless solutions for some
components.

3. EXAMPLE DEVICES
In this section we show a number of example devices to
illustrate how the Calder toolkit can be used early-on in a
rapid, iterative design process.

Game controller – Figure 2, a simple game controller is
prototyped by placing a wireless knob and button array in a
rough foam concept model. Due to the inherent size of the
knob, it is placed in a cavity which fixes its location.
However, the buttons are simply pinned down into the
surface and can be easily moved to the other side to
experiment with both left and right-handed configurations.
This allows designers to gain usage experience with the
device extremely early in development. Modifications to
the form and interface driven by actual interactive usage
can begin immediately.

Navigation remote – Figure 3. By integrating with a tool
like Macromedia Director, physical interfaces can be used
to control and interact with high-fidelity interface mock-ups
rather then relying on the mouse and keyboard. Here a
navigation controller is being prototyped for a music kiosk.
The left, right, and center buttons can be used to navigate
and make selections. The buttons can be repositioned and
alternative forms can be tested without having to stop the
Director simulation.

Chair monitor – Figure 4. A tilt sensor has been attached to
an office swivel chair and transmits data wirelessly to a
nearby uplink transceiver (see Sections 4 and 5.2 below)
suspended beneath the desk. The transceiver relays the state
of the chair to the desktop computer and then over the
network to an ambient status display. The short-range
wireless connection allows monitoring the state of the chair
without a wire tether, which could easily become entangled.
In this case, the transmission antenna was extended with an
extra wire for additional range. This example shows the
diversity of potential experimental applications that could
benefit from having the Calder toolkit beyond product
design.

Toolstone/toolbunny – Figure 5. A partial recreation of the
two-handed toolstone interaction device [17] can be
achieved by attaching a wireless tilt sensor onto a block of
wood or foam to monitor block orientation to drive
application state or modality. This allows a functional
prototype to be created well before the form has been
finalized. By supporting very rapid experimentation, a wide
variety of forms can be tried without much investment or
cause, such as using a stuffed bunny. While this example is
admittedly silly, it illustrates the important point that the
toolkit is fluid enough not to heavily constrain the creative
expression of the designer’s ideas.

In the following sections we provide detailed description of
the toolkit.

4. TOOLKIT ARCHITECTURE
Each of these requirements derived from our interactions
with designers have significant engineering implications
and present several difficult trade-off decisions that must be
made to make this toolkit realizable. This section describes
some of these issues.

Figures 6 and 7 show wired and wireless components of the
current version of the Calder toolkit. The relationship
between these two sets of devices, the controlling PC, and
development environment is illustrated in the architectural
overview, Figure 8. This architectural configuration was
the result of careful consideration of the user-driven factors
described in Section 2, as well as the constraints imposed
by technology.

From the technological point of view, two important
questions became apparent very early in the development
process: Where will power come from, and where will
computation be performed? In considering several possible
architectures and reviewing previous related systems, we
found that the answers to these questions fell into three
possible categories: distributed among each component, a
local master, or a global master. In a distributed system,
both the computational and energy resources would be
distributed across each component in the toolkit. A local
master is a centralized system where the computation or
energy source may be pooled into a single location to
achieve greater total capacity. And a global master, likely
involving a tether to an external source such as a PC, would
have the ability to provide substantial computational and
energy resources. Each of these alternatives has
implications on how well our user-driven goals could be
achieved and represented potential tradeoffs. For example,
component level computation is both possible and
somewhat tempting, because component operation and
communication will require a micro-controller anyway. It
was very likely that unused computational resources would
already be available in each component. However, this
approach can introduce many complexities in specifying
the interactive behavior of the prototype (in particular,
making it a much more difficult distributed programming
problem) and precludes the easy use of existing
development environments. Similarly, while wireless
components provide the greatest degree of fluidity and
flexibility, allowing components to be attached and moved
with ease, they also imply distributed power sources (i.e.
batteries). This begins to conflict with one of our earlier
design constraints of minimizing size since the operational
life span of tiny batteries tends to be short. (Earlier work
[1, 6] utilized an inductive coupling technique capable of
powering small devices without the use of batteries, but we
found significant functional limitations to this approach.)

Figure 4. Wireless chair monitor created by attaching a tilt
sensor to the back of an office chair. The uplink transceiver

is suspended beneath the desk.

Figure 5. Quick variations on a tool stone form factor.

Wooden block, foam prototype, and stuffed bunny.

To address the design requirements within our
technological constraints, we chose a hybrid solution for
the toolkit. For computation, we chose a global model of
an external PC so that we could employ the very large
library of existing programming tools and environments
that developers and designers are already familiar with. A
PC provides storage and communication resources that may
be necessary to simulate the functionality of many potential
products. For power, we chose a split strategy to
accommodate conflicting needs by designers. While
wireless components provide the highest level of fluidity,
the spatial overhead of the communication hardware causes
them not to be the smallest in size. Additionally, wireless
components cannot provide sufficient electrical power or
bandwidth for certain components, particularly output
devices such as motors or pixel displays. Wired
components do not suffer as greatly in these respects;
however, we felt that there was inherit value supporting the
fluidity in design exploration that wireless components
provide. Therefore, we created both wired and wireless
components that employ a distributed and global source of
power respectively.

To unify these forms, and simplify implementation,
wireless components communicate with a special wired
uplink transceiver component serving as a bridge from the
wireless to the wired portion of the system, which in turn
connects to the PC.

Parts of the architecture used in the Calder toolkit can be
contrasted with prior systems in this area. The Phidget
system [7, 8] uses a nearly identical approach to the wired
components of our system (we considered several other
alternatives, but in the end concluded that this option was
indeed the best choice given the currently available
technology). The iStuff toolkit [3] uses a similarly
structured wireless solution with distributed power and
global computation, but used technology and a
communication infrastructure appropriate only for
applications that permitted very large components. Finally,
the Lego Mindstorms System [9], a well-known robotics
prototyping toolkit, and the MetaCricket [13] system use
primarily a local master model for both power and
computation.

5. COMPONENT DETAILS
Each component in the Calder toolkit is equipped with a
small microcontroller (µC) that is responsible for managing
communications to the global master and providing sensing
or control for its I/O device(s). Wired components are
implemented with a Microchip PIC16C745 controller that
includes a Universal Serial Bus (USB) interface engine.
The wireless components are currently implemented with a
PIC16LF819. These chips can be purchased for under $3
in quantity.

As illustrated in Figures 6-7, and described below, a basic
though useful range of component types is currently
provided by the toolkit. However, the type of sensors and
actuators that can be interfaced is quite broad. As we
perform evaluation studies and move into wider
deployment we will expand the component set as needed,
including the addition of actuators and additional output
devices.

5.1 Wired Components
The current wired components include a general-purpose
input “hub” component and a related runtime configurable
I/O breadboard component. These components are capable
of interfacing with a variety of specific input and output
devices connected by a short cable.

The input “hub” component, Figure 9, has four connections
that accept digital input from a switch or button, and four
connections that accept analog input from a slider or knob.
The analog and digital connectors are non-compatible

Figure 8. Architectural overview.

Figure 6. Wired components. (left to right) I/O Breadboard
component, 4-button array, analog joystick, D/A Input

Component, single button, and analog knob.

Figure 7. Wireless components: (left to right) analog knob, 4-
button array, master uplink transceiver, 2-axis tilt sensor, and

3-LED array.

making it impossible to accidentally misconnect a device.
Similarly, the connectors are keyed preventing polarity
reversal. For testing purposes, we have created a small
collection of digital and analog devices designed for use
with this hub component, Figure 6. The most sophisticated
of these is the 2-axis joystick with button press. This
consumes 2 analog ports and 1 digital port (if the button
feature is to be supported by the application). Additional
hub components may be added as needed by the application
to support many analog and digital input devices. The
connected devices are also “hot-pluggable”. This allows
the designer to try reversing the axis of the joystick or
replacing it with two entirely different analog devices by
simply unplugging and replugging the connections even
while the interface control program is still running. Thus,
basic hardware reconfigurations can occur without
involving the software environment.

The configurable I/O Breadboard component is designed
for use as an electronic prototyping tool for interfacing to
devices that are not yet in the library, Figure 10. This
component pushes many of the internally configurable
features of the microcontroller onto the PC for run time
configuration. Pins may be switched between input and
output, as well as between analog and digital as desired,
using simple command on the PC. This allows the more
electronics savvy developer to dynamically reconfigure the
component at runtime to suit the needs of their application.

5.2 Wireless Components
The core of the wireless system used in the toolkit is a
wired uplink transceiver, which provides a communication
bridge between the PC and the wireless components.
Included among wireless components are a small button
array, small LED array, an analog knob, and a 2-axis tilt-
switch sensor, Figures 7 and 11. Although the set of devices
is still limited, they demonstrate that the wireless
infrastructure is capable of supporting both non-trivial input
and non-trivial output. A variety of other sensors and output
modules can easily be created, with the primary limitation
likely to be battery life rather than the wireless technology.

To meet our goal of “foam friendly” components, we
designed our wireless components with a push-pin
attachment mechanism (two pins per component are
necessary to prevent rotation) as shown in Figure 11. These
metal pins also serve as the wireless communication
antennas. This satisfies the design requirement of
supporting fluid design exploration by allowing the
components to be repositioned without interrupting the
interface control program while also satisfying a
technology requirement.

6. COMMUNICATION INFRASTRUCTURE
Wired components communicate with a global master (a
PC) via a USB connection. This connection provides both
communication and electrical power (up to 2.5W per
device), and is standard equipment on both PCs and

Macintosh computers. (It is worth noting that both the
Phidgets and iStuff systems made this same design choice
due to these technological benefits.)

However, a wireless communication system that fit within
our initial design constraints was not commercially
available. Though substantial advances in wireless
technology have been made recently, size of the
components and the size of the battery required to
implement standard wireless solutions did not meet our

Figure 9. 2-axis joystick with button press consumes 2
analog ports and 1 digital port on the D/A Input “hub”

component.

Figure 10. General-purpose runtime configurable I/O
Breadboard component used for exploring new and

custom devices.

Figure 11. Close up of the wireless button and LED array.
The pins on the back of the components used to attach to
foam models also serve as transmit and receiver antennae

.

requirements. In order to achieve small size through a
minimum of parts, we developed a simple, very low-power
wireless system designed to operate only at short distances.
In its typical use with foam models, we foresaw that a small
transceiver component would be placed inside a cavity in
the foam or on the bottom of the model (see Figures 3-5).
The wireless components would then be freely positioned a
few inches away on the surface of the foam.

Unlike conventional radio, the wireless technology
presented here uses a capacitive coupling technique that is
very low-power and does not require specific size, shape, or
oriented antennas to communicate [16]. This allows each
component to be operated by small coin cell batteries and
short antennae.

To transmit data, all that is needed is a pulse-width
modulation (PWM) capable microcontroller and a short
antenna wire. Data is transmitted by controlling the
presence or absence of a carrier signal on the antenna
generated by the PWM module. This is often referred to as
CPCA (carrier-present carrier-absent) modulation or OOK
(on-off keying) [11]. Some of the limitations of this
modulation scheme are mitigated by the use of a slotted
transmission protocol that precludes packet collisions.

Since nothing besides an open wire is attached to the PWM
output pin, a negligible amount of current is necessary for
data transmission. Typically, the attached output device or
input sensor will consume the majority of energy resources.
Using a single 12mm lithium coin cell, we have
experienced continuous transmit and receive cycles lasting
over 72 hours. Since the 16LF819 draws as little as 0.2µA
while in sleep mode, simple power conservation techniques
can extend the operational life span of these components to
several weeks without a significant change in behavior
from the user’s perspective.

Though transmission is possible with very short antennae,
larger antennas can substantially increase the amount of
capacitive coupling achieved between the transmitter and
the receiver thereby improving range. By attaching a thin 6-
inch wire to the transmission antenna, we have seen the
maximum component range increase from 2-3 inches to
nearly 2 feet. This allows the toolkit user to easily increase
range simply by adding extra conductive material to the
transmission antenna, such as twisting on a thin piece of
wire. In many cases, this modification may have little to no
impact on the usability of the prototype.

Though transmission can occur with nearly no parts
external to the existing microcontroller (i.e., with only an
antenna wire attached to one of its output pins), the same
cannot be said about receiving data. A few additional parts
are necessary to amplify and perform basic filtering. Shown
in Figure 12, the receiving circuit consists of two MCP602
operational amplifiers (normally packaged in a single small
integrated circuit) with a simple low-pass filter in between.

The output of the receiver is DC biased by the
microcontroller to just below logic high threshold voltage.
This done with the resistor-capacitor pair connected to the
biasing pin (bottom right of Figure 12). The capacitor is
charged until the biasing pin reads it as logic high. The
capacitor is then discharged for a controlled amount of time
(in the range of 20µs) to drop the DC bias just slightly
below logic high threshold. This technique allows a
standard digital I/O pin to be sensitive to very small voltage
variations. In the presence of the carrier signal, voltage
spikes will occur at the carrier wave frequency registering
as logic high, Figure 13. Since the microcontroller actively
maintains the DC bias, the amount of signal necessary to
trigger logic high can be dynamically adjusted in software.
This gives the receiver the ability to adapt to different
environments of varying noise, somewhat like automatic
gain control. The input signal is then sampled and
demodulated in software reconstructing the original
transmitted data string. By utilizing the computational
capabilities of the microcontroller, a wireless receiver can
be accomplished with a very small number of external
components (one eight-pin IC, four resistors, and two
capacitors).

When compared to typical radio tuning technology, the
frequency response of the receiver circuit is fairly wide due
to the simplicity of the circuit. The result of having a wide
bandwidth sensitivity is a reduction in range performance in
the presence of high ambient noise. Tighter tuning around
the carrier frequency is possible with additional filtering

Figure 12. Amplifier circuit used to receive wireless signals.
The input and biasing pins are simple digital I/O pins on a

micro-controller.

Figure 13. DC biasing the input allows small voltage

variations to trigger logic high and low switches inside the
micro-controller. With CPCA modulation, software can

demodulate the original data.

components. This would allow signal amplification to be
much more aggressive, resulting in improved range.
However, our current design was chosen for its small part
count and correspondingly low space requirements yet
reasonable frequency selectivity at 200 KHz.

Our current implementation of this system yields a data
transfer rate of 4Kbits/s (half-duplex). Improving the
software demodulation or using a diode detector circuit [11]
could increase the amount of available bandwidth. A data
rate of 4Kbits/s is sufficient to support several concurrently
operating input and output devices (but not high bandwidth
components such as graphical displays and high fidelity
audio).

7. PROGRAMMING INFRASTRUCTURE
The final important aspect of the Calder toolkit is the
programming infrastructure. A primary goal here has been
to integrate it with tools that our target users already use.
Almost all interactive GUI systems are now based on a
paradigm that uses objects to represent interactive
components – each responsible for managing its own state,
producing its own output on the screen, etc. – along with an
event-based model for input. To integrate with such a
system we employ the same strategy as the Phidgets toolkit
– we insert surrogate objects inside the GUI system to
represent the external Calder objects. Changes to the state
of Calder components are made by changing the state of the
corresponding surrogate objects (which encapsulate access
to the underlying communication mechanism) and similarly
changes to the Calder component state are reflected in the
surrogate object. Actions on the physical component that
correspond to inputs are injected into the host system as
conventional events.

In this way, by providing only a small, very low level
communication infrastructure, and a “glue” level of
surrogate objects specialized to a particular host toolkit, we
can easily transparently embed Calder components in a
conventional GUI environment. Above the level of
surrogate objects, Calder components behave like other
components in the host environment. This allows us to
reuse rather than reinvent the extensive programming and
debugging environments that have been developed for GUI
implementation.

At a detailed level, each wired Calder component presents
itself as a standard USB Human Interface Device (HID)
class that loads default hardware drivers. Each component
is given a unique serial number for identification. Low-
level USB HID interface details are packaged into
Dynamically Linked Libraries that provide simplified
access routines in C. These C routines can then be accessed
from within the host environment using standard native
code extension mechanisms (e.g., the Java Native Interface
facility, or Macromedia Director XTRAs interface).

8. CONCLUSIONS AND FUTURE WORK
In this paper we presented the design and implementation
of Calder, a hardware toolkit to support the design of
interactive products. Our design and development decision
were based on preliminary work of observing existing
design practices and interviews. Now that we have
developed a functioning prototype toolkit, the next step in
our process is to perform an evaluation of our toolkit. To
this end we are in the process of developing a library of
components for use in a graduate product design course.
From this feedback, we will iterate on our current
generation of hardware to create a system that meets the
needs and expectations that designers have and facilitate the
creation of better interactive products in the future.

ACKNOWLEDGMENTS
This work has been funded in part by the National Science
Foundation under grants IIS-0121560 and IIS-0325351.

REFERENCES
1. Avrahami, D., Hudson, S.E., “Forming Interactivity:

A Tool for Rapid Prototyping of Physical Interactive
Products”. Proceedings of DIS 2002. NY: ACM Press,
2002

2. Bailey, B., Konstan, J., “Are Informal Tools Better?:
Comparing DEMAIS, Pencil and Paper, and
Authorware for Early Multimedia Design”, in
Proceedings of the conference on Human factors in
computing systems, pp. 313-320, April 2003

3. Ballagas, R., Ringel, M., Stone, M., Borchers, J.,
”iStuff: a Physical User Interface Toolkit for
Ubiquitous Computing Environments”, in Proceedings
of the conference on Human factors in computing
systems, pp. 537-544, April 2003.

4. Buxton, W., Lamb, M., Sherman, D., Smith, K.,
“Towards a Comprehensive User Interface
Management System”, in Proceedings of the 10th
annual conference on Computer graphics and
interactive techniques, pp. 35-42, August 1983.

5. Cagan, J., and Vogel, C., Creating Breakthrough
Products: Innovation from Product Planning to
Program Approval, Financial Times - Prentice Hall
Publishing. 2001.

6. Dietz, P.H.; Leigh, D.L.; Yerazunis, W.S., “Wireless
Liquid Level Sensing for Restaurant Applications”,
IEEE Sensors, pp. 715-20, June 2002.

7. Greenburg, S., Fitchett, C., “Phidgets: Easy
Development of Physical Interfaces through Physical
Widgets”, Proceedings of the ACM Symposium on
User Interface Software and Technology, pp. 209-218,
November 2001.

8. Greenburg, S., Boyle, M., “Interaction in the real
world: Customizable physical interfaces for interacting
with conventional applications”, Proceedings of the

ACM Symposium on User Interface Software and
Technology, pp. 31-40, October 2002.

9. Knudsen, J., The Unofficial Guide to LEGO
Mindstorms Robots. O’Reilly Press, 1999.

10. Landay, J., Myers, B., “Interactive sketching for the
early stages of user interface design”, in Proceedings
of the SIGCHI conference on Human factors in
computing systems, pp. 43-50, 1985.

11. Linx Technologies, “Modulation Techniques for low-
cost RF Data Links.” Application Notes: AN-00130,
1997.

12. Lin, J., Newman, M.W., Hong, J.I., Landay, J.A.,
“DENIM: finding a tighter fit between tools and
practice for website design”, Proceedings of SIGCHI:
Conference on Human Factors in Computing Systems,
ACM Press. April 2000.

13. Martin, F., Mikhak, B., Silverman, B., “MetaCricket:
A designer's kit for making computational devices”,
IBM Systems Journal, v39, n3-4, p.795, 2000.

14. Myers, B.A. Hudson, S.E, Pausch, R., “Past, Present
and Future of User Interface Software Tools”, ACM
Transactions on Computer Human Interaction, v7, n1,
pp 3-28, March 2000.

15. Pfaff, G. (ed), User Interface Management Systems:
Proceedings of the Seeheim Workshop, Springer-
Verlag, Berlin, 1985.

16. Reed, D.G. (ed). The ARRL Handbook For Radio
Amateurs, 79th ed. Chapter 20. The American Radio
Relay League, Inc. 2001

17. Rekimoto, J., Sciammarella, E., “ToolStone: effective
use of physical manipulation vocabularies of input
devices”. Proceedings of the ACM Symposium on User
Interface Software and Technology, pp. 109-117,
November 2000.

18. Rettig, M., “Prototyping for Tiny Fingers”,
Communications of the ACM, pp. 21-27, 37(4), 1994.

19. Ulrich, K., Eppinger, S., Product Design and
Development. Princeton, NJ: McGraw Hill Higher
Education, 1999.

