
The Kinetic Typography Engine:
An Extensible System for Animating Expressive Text

Johnny C. Lee*, Jodi Forlizzi*†, Scott E. Hudson*
*Human Computer Interaction Institute and †School of Design

Carnegie Mellon University,
Pittsburgh, PA 15213 USA

{ johnny, forlizzi, scott.hudson }@cs.cmu.edu

ABSTRACT
Kinetic typography – text that uses movement or other
temporal change – has recently emerged as a new form of
communication. As we hope to illustrate in this paper,
kinetic typography can be seen as bringing some of the
expressive power of film – such as its ability to convey
emotion, portray compelling characters, and visually direct
attention – to the strong communicative properties of text.
Although kinetic typography offers substantial promise for
expressive communications, it has not been widely
exploited outside a few limited application areas (most
notably in TV advertising). One of the reasons for this has
been the lack of tools directly supporting it, and the
accompanying difficulty in creating dynamic text. This
paper presents a first step in remedying this situation – an
extensible and robust system for animating text in a wide
variety of forms. By supporting an appropriate set of
carefully factored abstractions, this engine provides a
relatively small set of components that can be plugged
together to create a wide range of different expressions. It
provides new techniques for automating effects used in
traditional cartoon animation, and provides specific
support for typographic manipulations.

KEYWORDS: kinetic typography, dynamic text, time-
based presentation, automating animation effects.

INTRODUCTION
The written word is one of humanity’s most powerful and
significant inventions. For over 4000 years, its basic
communicative purpose has not changed. However, the
method in which written communication is authored and
presented has never stopped evolving. From cuneiform
markings on clay tablets, to pen and parchment, to the
Gutenberg press, to computers and the internet, technology
has always provided text with new mediums to express
itself. The explosion of available computing power has
added a new possibility: kinetic typography – text that
moves or otherwise changes over time.

Kinetic typography can be seen as a vehicle for adding
some of the properties of film to that of text. For example,
kinetic typography can be effective in conveying a
speaker’s tone of voice, qualities of character, and affective
(emotional) qualities of text [Ford97]. It may also allow
for a different kind of engagement with the viewer than
static text, and in some cases, may explicitly direct or
manipulate the attention of the viewer.

In fact, the first known use of kinetic typography appeared
in film – specifically, Saul Bass’ opening credit sequence
for Hitchcock’s North by Northwest [Bass59] and later
Psycho [Bass60]. This work stemmed in part from a desire
to have the opening credits set the stage for the film by
establishing a mood, rather than simply conveying the
information of the credits. Use of kinetic typography is
now commonplace for this purpose, and is also very
heavily used in TV advertising where its ability to convey
emotive content and direct the user’s attention is generally
a good match to the goals of advertising. We believe that
if it can be made accessible via good tools, the power of
kinetic typography can also be applied to benefit other
areas of digital communications.

A second origin for time-based presentation of text comes
independently from psychological studies of perception
and reading. For example, [Mill87] studies perceptual
effects of a number of text presentations, such as scrolling
text. One of the most fruitful of these is a method known as
Rapid Serial Visual Presentation (RSVP), where text is
displayed one word at a time in a fixed position [Pott84].
Studies have shown that, because scanning eye movements
are unnecessary when using RSVP, it can result in rapid
reading without a need for special training. In addition,
RSVP techniques provide advantages for designers
because they allow words to be treated independently
without regard to effects on adjacent text elements.
Finally, RSVP can be seen as a means for trading time for
space, potentially allowing large bodies of text to be shown
at readable sizes on small displays.

Figures 1-3 illustrate some of the things that kinetic
typography can do. (Please refer to the video proceedings
for dynamic renditions of these figures.) Figure 1 shows
two different renditions of the same words expressing a
different emotional tone. As described by Ishizaki
[Ishi97]:
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“Suppose it is early Saturday morning. The actor -
perhaps a child or puppy - hurries to the door,
eager to play outside. One speaker [top] finds
sunshine; the other, rain.”

In Figure 1a, the choice of typeface, rapid rhythmic
motions, changes of scale, and rotation, all combine to
convey a sense of exuberance. Whereas, in Figure 1b, a
very plain typeface has been chosen, and a combination of
slow and decelerating pace, reduction of typeface weight,
and a shrinking motion analogous to slumping of the
shoulders, combines to convey a sense of disappointment.

Figure 2 illustrates the creation of clearly distinct
characters in a dialog. This is done by having text
originate from two distinct spatial regions and flow in two
different directions, as well as giving each character a
particular tone. On the left, shouting is expressed by large
expanding, shaking, and vibrating text, which lingers and
appears to reverberate. On the right a more diminutive
tone is expressed by small size, slower pace, and clear
adherence to the text baseline. We also see a clear change
in tone of voice at a particular point in the piece, again
accomplished by manipulating aspects such as size, pacing,
maintenance of baseline, and fading.

Finally, Figure 3 also illustrates the creation and interplay

of distinct characters, this time created using identifiably
different aspects of position, typeface, size, and color. In
addition, the segment highlighted by the static shots shown
here is used to very clearly and inexorably transition the
user’s attention from the ongoing dialog of the character at
the left, to the entry of the character at the right.

While the utility of kinetic typography has been recognized
(and seen some practical use) for several decades, it still
lacks the rich history, and accompanying academic study,
of either static typography or film. There have been efforts
to provide a taxonomy of typographic forms related to
interface design [Bork83], as well as examinations of
dynamic layouts of static typographic compositions
[Hieb92, Chan98]. This work builds on a history of work
that computationally explores graphical techniques, scaling
and shading, as a means of focusing attention on a
particular area of a display and increasing the amount of
information the screen can display [Gren96, Kand98,
Masu95, Neuw92]. However, the earliest systematic
investigations of time-based presentation of text in its own
right began in the late 1980s, when designers and
technologists manipulated typographic characters by using
simulated physical movements, such as springs [Smal89].
More recent research has attempted to provide a
descriptive language of time-based forms [Wong95, Ishi96,

a)

b)

Figure 1. Expressing different emotional tones for the same text

Figure 2. Two characters from the Monty Python “argument clinic” sketch

Figure 3. Direction of attention using movement
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Ford97, Ishi98]. Finally, [Lewi99] discuss a very
interesting interface for editing “live” kinetic typography.

ANIMATION TECHNIQUES FOR KINETIC TEXT
The craft of traditional (cartoon) animation was
tremendously advanced by the Disney animators of the 20s
and 30s, and from this work emerged a set of design
principles and specific techniques which could be
employed to turn drawing into compelling, engaging, and
lifelike (animate) characters [Thom81]. Adaptation of
these techniques to 3D computer graphics was described
by Lassiter in [Lass87] (these techniques were also related
to interactive systems in [Chan93] and toolkit level
abstractions were described in [Huds93] and [Myer96]).

These techniques can easily be adapted to use in kinetic
typography. Useful techniques from traditional animation
include, for example, slow-in slow-out movement, squash
and stretch, movement in arcs, anticipation, follow-through
and secondary action. Later we will introduce new
techniques for supporting several of these within the
kinetic typography engine.

In addition to those from traditional animation, a number
of techniques specific to kinetic typography have also been
identified.

Previous work such as [Ford97, Ishi98] has identified
several key areas in which kinetic typography has been
particularly successful. These include:

• Expression of affective (emotional) content,
• Creation of characters, and
• Capture or direction of attention.

Working towards the goal of conveying emotive content, a
set of techniques has been developed for expressing the
equivalent of tone of voice. Tone of voice can be
understood as variations in pronunciation when segments
of speech including syllables, words and phrases are
articulated. Tone of voice can be roughly divided into two
sets of features: paralinguistic features, such as the husky
quality of a voice, and prosodic or linguistic features, such
as pitch, loudness, tempo or speed of delivery [Crys75,
Ford97].

It has been difficult to find effective ways to portray
paralinguistic features in recognizable form. However,
aspects of pitch, loudness, and tempo can be effectively
conveyed. For example, large upward or downward
motions can convey rising or falling pitch. Loudness is
used prosodically for a number of purposes. It can affect
an entire utterance (establishing its volume, and producing
significant effects such as whispers and shouting), a single
word or phrase (to supply accent), or a specific syllable
(for stress). Loudness can be mimicked by changing the
size of text, as well as its weight, and occasionally contrast
or color. For high volumes, motions mimicking vibration
can be used. When combined with vibration, persistence
of words beyond the point of their utterance can be used to
mimic reverberation (see Figure 2). Since speed of
delivery and tempo (as well as its regularization as rhythm)

are temporal effects, these can generally be directly applied
by manipulating timing, duration, and pacing. Finally,
speed of delivery effects applied to individual words or
phrases can be mimicked by modifications to text width
(i.e., spatial stretching to indicate a temporally stretched
word) as well as scaling effects.

The other major class of techniques for conveying emotive
content is analogous motion. Analogous motion uses
movements reminiscent of human actions that convey
emotional content. For example, small vibrations that are
analogous to trembling can be used to convey affective
content with high levels of arousal, such as anticipation,
excitement, or anger. Figure 1b has shown a “shrinking”
motion analogous to slumping the shoulders that can
convey affect with lower arousal such as disappointment.
When combined with appropriate content, slow rhythmic
motions reminiscent of calm breathing appear to induce
feelings of empathy.

While expression of emotion has been a central use of
kinetic typography, it is also important to recognize its
limitations. In particular, experience has shown that while
kinetic typography can set the emotional tone of
ambiguous text, it cannot normally replace or override
strong emotive content intrinsic to the meaning of the text.
For example, it is not normally possible to use kinetic
typography to make a sad story into a happy one. Instead,
kinetic typography can reinforce or temper emotive content
already present.

In addition to emotional content, kinetic typography has
also been successful in portraying characters and dialog.
Principles for portraying characters have been adapted
from film [Smit95]. These principles include the need to
establish identification and re-identification of a character
across appearances (and conversely separation of distinct
characters). We establish this recognition of a character by
use of distinct, persistent, and identifiable visual, spatial,
and other properties. Recognition techniques can be seen
in Figures 2 and 3 where consistent use of spatial location,
movement patterns, typeface, type weight, and tone of
voice techniques are all used to distinguish characters.

A second important technique related to character creation
is attachment. In film we typically follow (are attached to)
one or two characters through time, with other characters
appearing only as they encounter the main character(s).
Techniques for attachment in kinetic typography are still
being investigated. However, use of spatial locality is one
way to establish attachment.

A final communicative goal found in many examples of
kinetic typography is the capture and direction of attention.
Here we can draw principles from the scientific knowledge
of perceptual and cognitive psychology. For example,
perceptual phenomena that have sudden onset tend to
induce attentional capture effects [Pash98]. This fact can
be used to guide the manipulation of timing and pacing to
produce different demands for attention. Similarly,
moving objects intrinsically draw ones attention, and
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movement along a path to an end point will tend to
strongly draw the eye to that end point. Hence, large
sweeping movements are a useful vehicle for explicitly
transitioning the user’s attention from one location to
another (again, see Figure 3).

Note that an important potential pitfall of kinetic
typography techniques can be that they demand too much
attention from the user. As a result, it is important to
consider techniques for manipulation of attention in the
negative as well as positive, for example, avoiding sudden
onsets when attention capture is not desirable.

KINETIC ENGINE ARCHITECTURE
To implement the breadth of effects needed to support
kinetic typography, we have created a general purpose
kinetic typography engine based on an extensible
animation architecture. (The engine and its behavior
library are implemented in just over 2700 lines of Java
code under J2SE 1.3.1)

Under this architecture, individual textual elements
(representing phrases, words, or even individual letters as
needed for a presentation) are organized into hierarchical
structures. In particular, objects representing strings
(which include code for rendering text) are placed in
sequence objects, which may in turn be contained in other
sequences, etc. It is also possible to place non-textual
display objects in this hierarchy. These sequence trees are
reminiscent of the scene graphs typically used in 3D
computer graphics as well the interactor trees employed in
modern UI toolkits, and they serve many of the same
purposes (such hierarchies were also used in the kinetic
typography system described in [Lewi99]). For example,
sequence trees provide for a hierarchical coordinate system
whereby the position of a child object or subsequence is
expressed relative to the position of its parent. However,
for our architecture, this hierarchy is taken further by
applying similar concepts to time. As a result, the
expression of time within a subsequence is relative to the
designated start time of its parent sequence. This temporal
hierarchy offers the same kind of benefits as the typical
spatial hierarchy – for example, allowing whole
subsequences to be moved together in time.

Each object and sequence in the tree has a set of properties
that affect the details of its behavior. For example every
object has properties controlling its x and y position and

string objects have properties controlling their typeface,
type size, type style, kerning, color, transparency, rotation,
shear, etc.

Note that while it may be tempting to consider the facilities
of a typical general-purpose animation system sufficient,
for kinetic typography, we have found it important to pay
particular attention to typographic properties in ways that
most general animation systems do not.

For example, Figure 4 presents two versions of the same
text object, one that has been scaled geometrically and one
scaled typographically using font size. Notice the poor
letter spacing generated from the geometric transformation
in comparison to the typographic transformation.

In general, there are many detailed typographic properties
that may need to be manipulated [Brin01]. For example,
both [Rose98] and [Cho99] refer to the concept of
continuously parameterized fonts, or malleable fonts that
may be manipulated so dramatically they appear to be
completely different type faces. The architecture of the
kinetic typography engine was designed to accommodate
these kinds of manipulations (in addition to geometric
manipulations) and provides the infrastructure necessary to
animate any component of them (although our current text
rendering objects do not currently make use these types of
advanced fonts).

The kinetic typography engine works by varying the
properties of objects within the system over time. This in
turn determines how visible objects are drawn over time.
Changes are accomplished by attaching behaviors to
objects (in a manner similar to the attachment of animation
constraints to slots in [Myer96]). A behavior is simply an
object which computes a value based on another set of
values (one of which is an indication of the current time).
For example, to move a word across the screen at a
uniform pace horizontally, a UniformChange behavior
object could be attached to the x property of the
corresponding string object as illustrated in Figure 5.

The input values used by a behavior are expressed as
properties. Like all other properties, they can either simply
be assigned static values, or they can have time varying
behaviors attached to them. The connection of behaviors
to behaviors forms a data-flow style computation that is
conceptually related to the constraint-based animation
control system described in [Duis86]. As we will see later,
this ability to modify one behavior with another provides a
powerful behavior composition capability that allows
sophisticated and varied effects to be created from a very

Figure 4. Geometric scaling (top) vs. typographic
scaling (bottom).

Figure 5. Behavior to move a word horizontally
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simple base library of behaviors.

Because of the extensive and central use of time in an
animation system, we have found it useful to uniformly
“factor out” time from the other values involved in
behavior computations, and provide special mechanisms
for manipulating it. In particular, a hierarchical system of
times is provided which operates much like a hierarchical
coordinate system in the spatial domain. Each sequence
can provide a time transformation function (a special form
of behavior object called a time filter) that indicates how
the local system of time seen by its children is related to
the system of time it is embedded within. For example,
local times can be offset from a more global time system
using a Delay time filter, or local time can be sped up or
slowed down using a Speed filter.

In addition, each behavior may optionally have a time filter
associated with it that affects the apparent progression of
time for that behavior. Finally, time filters can be
composed by chaining, and most time filters are controlled
by a set of parameter values. These parameter values are
of course represented as properties to which other
behaviors can be attached.

While not providing any fundamentally new capabilities,
“factoring out” time has provided convenient mechanisms
for implementing a number of common effects. For
example, simple time filters are provided for repetition
(Loop), reversal of action (Reverse), general pacing control
(PaceInOut which provides capabilities similar to the
general pacing function described in [Huds93]), and even
programmatic or interactive stopping of time (Pause).

EXECUTION
Once a set of text objects with attached behaviors and time
filters has been established, rendering of kinetic
typography with the engine is very simple. We make
repeated drawing traversals to render each frame. Each
traversal step is passed the current time from its parent
(expressed in its parent’s time system) as a part of its
drawing request. This is transformed by executing any
local time filters to obtain a time expressed in local time.
This local time is then passed on to each component being
drawn (which may in turn transform it, etc.). Prior to
drawing each object, we request the value of each of its
properties. To obtain these values it may be necessary to
execute a behavior attached to it. The behavior similarly
transforms its notion of local time via any attached time
filters, and then requests each of its property values
(possibly causing additional time filters and behaviors to
be invoked, etc.). This computation is equivalent to that of
a typical one-way constraint system (see for example:
[Huds91]).

To date we have concentrated only on real-time rendering.
In this setting, we simply repeatedly make draw requests
based on the current time – enforcing delays so as not to
render faster than actual refresh rates, but otherwise letting
the system run free. The same code could, however, also
be used in an off-line fashion by rendering each frame

separately at its intended time in the final product.

BEHAVIOR LIBRARY
The architecture and runtime system described above
provide a robust and flexible base for implementing kinetic
typography. To make a complete tool, however, this base
needs a library of actual behaviors and time filters that
provide the right actions, give very good coverage of the
effects needed, and supports easy extensibility in the rare
cases where new behaviors might be required.

In designing a set of behaviors for such a library, we have
taken what can be seen as a signal processing approach
where nearly every behavior is seen as either generating or
transforming a waveform – a single dimensional quantity
that varies over time. This approach has lead to a
remarkably small set of rather simple (and easy to
implement) behaviors that nonetheless have very wide
coverage of effects. Further, by considering waveforms as
functions over time we have uncovered simple analytical
approaches to providing automated support for traditional
animation techniques such as secondary action.

In order to increase uniformity, all current behaviors are
treated as waveform transformations (in signal processing
terms: transfer functions). For behaviors that are naturally
waveform generators, this is achieved by simply adding the
generated waveform to the incoming waveform (which can
be set to a constant zero if desired).

One of the simplest but most useful behaviors in our
library is UniformChange. In addition to time and an
incoming waveform value, this behavior is parameterized
by the properties of amount, and duration and it produces a
simple uniformly increasing value. Specifically:
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Two other basic behaviors include Oscillate, which
produces an oscillating sine wave, and Curve, which
produces a curved waveform controlled by a simple single
segment Bézier curve. Like UniformChange, these
behaviors are parameterized by amount and duration
properties. Oscillate is also parameterized by frequency
and phase properties. Finally, the Jitter behavior provides
a waveform containing random values with certain spacing
in time. It can be computed as:
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where Rand(x) is a pseudo-random number generator
restarted with seed value x and seed is an unique static
integer for each instance of Jitter.

The library also includes a set of basic time filters. For
example, the Delay filter simply computes:
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otherwise
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Since Delay is structured as a time filter it can be used to
shift any waveform without regard to how it is constructed.

The Speed time filter computes:

otherwise
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and can be used to speed up or slow down an effect or
sequence. Another standard time filter is Loop, which
causes an interval of time to be delivered repeatedly. It is
parameterized by period and duration, and computes:

otherwise
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Additional time filters include Reverse, which causes time
to proceed backwards within a fixed interval, and
PaceInOut, which provides non-uniform pacing during an
interval based on a simple single segment Bézier pacing
curve. This can be used, for example to implement slow-
in/slow-out motions.

In order to provide live programmatic control over
animations, the Pause time filter is provided. This time
filter has pausedState and tPaused properties. Whenever
the pausedState property is changed from a zero to a non-
zero value, the current time (Tin) is automatically copied to
tPaused. The time filter then computes the following
value:

0when

0when

==
≠=

− pauseStateTTT

pauseStateTT

pausedinout

pausedout

In addition to live programmatic control, several simple
behaviors are also provided for live interactive control.
These include the EventTrigger time filter. EventTrigger
is implemented much like Pause except that it releases or
pauses action when a user input event matching a
specification occurs. This allows a range of simple
interactive behaviors to be created, including, most
notably, animations that are initiated by mouse clicks on
objects. In addition, behaviors are provided which return
one of the coordinates of the current mouse position as
their value, and a behavior that returns the distance from a
point to the current mouse position as its value.

BEHAVIOR COMPOSITION
We do not claim that the current behavior library is
complete. In fact, the ability to very easily extend it is an
important benefit of the system. However, even though the
current library is quite small, we can demonstrate that it is
already capable of covering a wide range of effects
occurring in practice. Such a small library can provide
very rich behavior because of the composition capabilities
afforded by the underlying architecture and the specific
organization we have chosen for behaviors.

All behaviors in the library support at least two different
mechanisms for composition: additive composition, and at
least one opportunity for functional composition.

Since each behavior is structured as a waveform
transformation that adds to another waveform, additive
composition can be achieved by chaining behaviors as
illustrated in Figure 6.

General functional composition can be achieved by
attaching a behavior to a property of another behavior, or
by attaching a time filter to a behavior. Figure 7 illustrates
one use of this capability. It shows a multiplicative
composition where one behavior imposes an envelope on
the magnitude of another.

AUTOMATING EFFECTS
Based on principles of traditional (cartoon) animation
developed and codified by Disney animators [Thom81],
Lassiter enumerated 11 principles for applying traditional
techniques to 3D computer animation [Lass87]. Several of
these principles (notably, the need for “appeal” in
characters, as well as most aspects of “staging” and
“exaggeration”) are too abstract for direct tool support.
However, several of these principles lead directly to
specific animation techniques that are extremely useful in
creating appealing kinetic typography. These include:

Slow-in / slow-out movements: a pacing of action in which
movements start slowly, move rapidly in the middle, then
end slowly.

Movement in arcs: movement of objects along curved
paths rather than straight lines.

Secondary action: the motion of an object resulting
indirectly from another action, such as hair or clothing
being blown back during a rapid movement, or arms
trailing behind a torso at the beginning of a movement.

Squash and stretch: a volume conserving compression or
extension of an object suggestive of the acceleration
(stretch) or deceleration (squash) of a non-rigid body.

Anticipation: a motion before the action proper, intended

Figure 6. Waveform addition by chaining”

Figure 7. Waveform scaling by functional composition
with amplitude
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to set the stage and prepare the viewer for the action that is
to about to take place – for example, an exaggerated
leaning back before moving quickly forward.

Follow through: a motion indicating the termination of an
action, typically carrying parts of an object somewhat
beyond the termination point of the action such as arms
swinging past a suddenly stopped torso.

Several of these effects are explicitly supported by our
system. For example, slow-in / slow-out pacing of
movements is directly supported by the PaceInOut time
filter, and movement in arcs is directly supported by the
Curve behavior for our library.

We also supply simple and direct support for secondary
action and stretch. Initially these concepts seem quite
dissimilar. However, they share a common fundamental:
in typical usage for cartoons, these behaviors are correlated
with the velocity of objects†. Therefore, taking the first
derivative of motion can often yield the basic waveform
needed to control secondary action. This derivation can be
done explicitly by the programmer for simple behaviors or
can be obtained computationally for arbitrary systems (via
finite difference approximations). Note that we get this
automatic support for secondary motion and stretch in a
simple robust fashion precisely because we treat behaviors
as waveforms and can apply simple analysis to them.

In Figure 8 we can see the waveforms for both the primary
action (applied to x-position of the word) and its derivative

†Simple physics indicates that these effects should be correlated
with acceleration rather than velocity. However, in a friction full
world, many significant forces are in fact correlated with velocity
and naïve observers may often confuse acceleration and velocity.
It appears that in the caricatured world of “cartoon physics”,
effects such as wind resistance and other friction may have
conceptual precedence over classical Newtonian inertia.

(applied to the x-shear of the word). By applying these
behaviors together we get a compelling overall effect
which is much more appealing that a simple change in
position.

In Figure 9, we see the same facility applied to
automatically produce the control waveform for stretch.
For stretch, we normally use the absolute value of the
derivative (in this case of the primary motion in y position)

Figure 8. In many cases, taking the derivative of
primary motion can yield the secondary motion
curve. Here, the x-shear wave is simply the
derivative of the x-position wave.

Figure 9. Stretching controlled by a function of
velocity.

Figure 10. A combined squash and stretch
waveform created from a stretch waveform with
squash curves blended at the impact points.
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since stretch depends on the speed, but not direction, of
movement.

While we can analytically, hence automatically, derive the
control waveform needed for stretch, slightly more work is
needed to implement a combined squash and stretch.
Squash applies when entering and leaving a point of
impact. The exact details of the squash portion of the
control waveform depend on the type of materials being
simulated (“firm” vs. “soft”) and/or the “liveliness” that is
desired of the bouncing object. However, as illustrated in
Figure 10, the overall form of a squash waveform is clear
(and can be programmatically applied based on a few
parameters). Prior to leaving an impact point, the
waveform is negative, reflecting the negative geometric
scaling of the squash. After departure, it fairly rapidly
climbs to meet a point on the original waveform for the
stretch. How negative the squash scaling is and how
rapidly it fades into stretch can be controlled by simple
parameters.

A number of forms of anticipation and follow through can
also be supported as waveform manipulations. Counter
movement for anticipation can be done by adding an initial
waveform segment that slowly goes negative, holds there
for a short time, then rapidly joins the original forward
(positive) motion. Again, the magnitude, holdTime, and
duration of this added segment become properties that the
animator can set for detailed control over the result.

Finally, overshoot movements useful for follow through
and secondary action can similarly be performed by
waveform manipulation at the trailing end of a typical
secondary action curve. Here the secondary action
waveform should extend (stay positive) past the duration of
the original primary motion. A more exaggerated version
of this motion might also end with a damped vibration
(similar to Figure 7).

COVERAGE OF THE DOMAIN
Over the last six years, several of our colleagues in the
CMU School of Design have taught a class in kinetic
typography techniques that considers many examples from
commercial use. The typically very talented students in the
class are also asked to create new expressions. From this
work, a corpus of about 30 primary examples‡, and many
more supporting examples, has been built up. While the
primary examples from this corpus may contain biases or

‡ Parts of this corpus are available on the web starting at: [Ishi97]
and several of the designs can be seen re-implemented in the
video proceedings.

omissions, we believe it represents a wide-ranging sample
of kinetic typography techniques in actual practice.

To validate that our tool provides good coverage of the
domain – ensuring that a wide range of expression is
practically possible and important expressions are not
hindered – we have tested it against the corpus primary
examples. About ⅓ of the examples have been fully re-
implemented in our tool, critical effects from others have
been implemented, and we have carefully cataloged the set
of effects used in the remainder.

With one exception, we found that all effects used in the
examples are readily supported by the kinetic typography
engine using only its current library. The exception
concerns blur and motion blur effects. Although our
architecture can support these effects, they are currently
not part of the library because they cannot yet be delivered
in real-time (the original works in question were done with
offline tools which could spend arbitrary time rendering
each frame).

COMPOSITE EFFECTS
The behavior library described thus far is low-level in
nature – it allows control of all aspects of motion, but it
also requires specification of many details. For many uses,
this detailed control is not needed and higher-level
approaches will be preferred. To support this, the system
provides for composite effects – the equivalent of macros
or subroutines that can be automatically applied to a body
of text. Such composite effects take a text string along
with a small set of parameters, and build the structure
needed to carry out the effect with the text.

One common example of a composite effect is RSVP,
which arranges for the rapid sequential delivery of each
word of its text. A related but more interesting composite
effect is HopIn.

As illustrated in Figure 11, HopIn words jump up from the
bottom of the screen using squash and stretch. Each word
rises to a random height (within specified limits), and then
falls as if in gravity, fading out on the decent, so that it
seems to disappear behind more recent words. Words
travel a random horizontal distance (constrained to keep
them within specified limits). However, each new word
appears where the previous word would have landed.
Hence, each word carries the viewer’s eye to the position
where the next word will appear. Finally, the appearance
of the next word is delayed from the start of the current
word by a time proportional to the square root of the length
of the current word, adjusted by extra delays for
punctuation. (Our informal experiments with overall

Figure 11. The HopIn composite effect.
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pacing seem to indicate that rates deemed comfortable for
reading with standard RSVP delivery, also feel
comfortable for HopIn delivery. However, considerably
more study would be needed to verify this.)

Several additional composite effects are included in our
current library. However, while we feel that the basic
behavior and time filter library supplied with the kinetic
typography engine is nearing a usably complete set which
covers most needs, this is not the case for composite
effects. Substantially more exploration is anticipated, and
in fact, we expect to be inventing and adding new effects
indefinitely.

EDITING INTERFACES
While this paper has considered work at an infrastructure
level, it is important to also consider the editing interfaces
that will be needed to make this infrastructure generally
usable, and we are currently working on such interfaces.
We see at least two distinct user populations for kinetic
typography tools. One is the visual and interaction
designers creating rich content. The other is the more
general population who might want to make use of a tool
to, for example, create email messages that convey more
emotive content. Currently, we believe that two very
different interfaces will be needed for these two
populations, but that both will be supported well by our
kinetic typography engine infrastructure.

Our early contextual investigation indicates that
“professional” users desire a high degree of detailed
control to achieve exactly the effects they want. For
example, we recently observed a design student who spent
three hours implementing the animation of a single word in
order to achieve the effect he wanted. (This is a testament
both to the tenacity of the student and the paucity of
current tools.). For this population, we believe that the full
power of our engine and library needs to be made
available. At the same time, however, this population
tends not to have strong programming skills and do not
most naturally think in mathematical terms. This makes
the “composition of functions” approach we describe in
this paper problematical. However, we believe this can be
easily overcome by structuring an interface around the
manipulation of waveforms (which can be presented and
manipulated in visual form).

For our second and more general population, we believe
that users will need to be able to apply effects very quickly,
but that the exact details will not need to be manipulable.
For this population we are considering the use of libraries
of parameterized schemas that text can be “plugged into”
to achieve a fixed set of “canned” effects.

CONCLUSION
In this paper we have considered the range of expressive
techniques useful for animating moving typographic forms.
We have introduced an architecture for a kinetic
typography engine, and a library of behaviors to
accompany this tool. Through composition mechanisms,
this relatively small library is able to cover much of the

domain of kinetic typography (as demonstrated with
respect to a substantial corpus of collected works.)

By taking a signal processing approach to animation, we
were able to treat all time driven changes in a uniformly
modular and extensible manner. Since each behavior can
be viewed as a simple filter that modifies an incoming
waveform to generate a new output waveform, behaviors
can be combined and interconnected in multiple ways to
produce highly complex animations. Each behavior can be
quite simple and naïve making the library of behaviors
easily extensible by a programmer. This approach also
allows us to easily utilize the mathematical properties of
real-time waveforms to assist the animator in generating
effects such as secondary motion.
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